Abelian Ideals with given Dimension in Borel Subalgebras

نویسنده

  • LI LUO
چکیده

A well-known Peterson’s theorem says that the number of abelian ideals in a Borel subalgebra of a rank-r finite dimensional simple Lie algebra is exactly 2r . In this paper, we determine the dimensional distribution of abelian ideals in a Borel subalgebra of finite dimensional simple Lie algebras, which is a refinement of the Peterson’s theorem capturing more Lie algebra invariants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra

If g is a complex simple Lie algebra, and k does not exceed the dual Coxeter number of g, then the k coefficient of the dim g power of the Euler product may be given by the dimension of a subspace of ∧g defined by all abelian subalgebras of g of dimension k. This has implications for all the coefficients of all the powers of the Euler product. Involved in the main results are Dale Peterson’s 2 ...

متن کامل

Abelian Ideals of Maximal Dimension for Solvable Lie Algebras

We compare the maximal dimension of abelian subalgebras and the maximal dimension of abelian ideals for finite-dimensional Lie algebras. We show that these dimensions coincide for solvable Lie algebras over an algebraically closed field of characteristic zero. We compute this invariant for all complex nilpotent Lie algebras of dimension n ≤ 7. Furthermore we study the case where there exists an...

متن کامل

On a theorem of Ranee Brylinski

In her thesis [RB], Ranee Brylinski (then Gupta) studied the orbit structure of the projective variety of abelian subalgebras of a …xed dimension, k, in a simple Lie algebra, g, over C under its adjoint group, G. Fix a Borel subalgebra, b, of g and let B be the closed subgroup of G corresponding to b. Then the Borel …xed point theorem implies that the closed G-orbits are precisely the orbits of...

متن کامل

ad-NILPOTENT IDEALS OF A BOREL SUBALGEBRA III

This paper is devoted to a detailed study of certain remarkable posets which form a natural partition of all abelian ideals of a Borel subalgebra. Our main result is a nice uniform formula for the dimension of maximal ideals in these posets. We also obtain results on ad-nilpotent ideals which complete the analysis started in [CP2], [CP3].

متن کامل

Abelian Ideals and Cohomology of Symplectic Type

For symplectic Lie algebras sp(2n,C), denote by b and n its Borel subalgebra and maximal nilpotent subalgebra, respectively. We construct a relationship between the abelian ideals of b and the cohomology of n with trivial coefficients. By this relationship, we can enumerate the number of abelian ideals of b with certain dimension via the Poincaré polynomials of Weyl groups of type An−1 and Cn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008